用人工智能解锁服装设计的神奇力量:图文并茂教程 (用人工智能解决交通问题这个研究方向好找工作吗)

SunoAI3个月前发布 howgotuijian
4 0 0
机灵助手免费chatgpt中文版

用人工智能解锁服装设计的神奇力量

人工智能(AI)正在各个行业掀起一场革命,服装设计也不例外。借助AI的强大功能,设计师可以更轻松地创建创新设计,简化工作流程,并扩大创造力。

人工智能在服装设计中的应用

  • 图案生成:AI算法可以生成独特的图案和印花,为设计师提供无限的设计可能性。
  • 款式预测:AI可以分析时尚趋势和消费者数据,帮助设计师做出明智的决策,预测未来潮流。
  • 个性化定制:AI可以根据个人的身体测量、风格偏好和场合创建定制服装。
  • 面料优化:AI可以模拟不同面料的性能,帮助设计师优化面料选择,提高服装的舒适性和耐用性。
  • 供应链管理:AI可以优化供应链,减少浪费并提高生产效率。

使用人工智能进行服装设计的步骤

  1. 确定目标:明确使用AI想要实现的目标,例如生成图案、预测趋势或定制服装。
  2. 选择合适的AI工具:研究并选择适合目标的AI平台หรือซอฟต์แวร์。
  3. 收集数据:为AI训练提供所需的数据,例如时尚趋势、面料属性或个人测量。
  4. 训练AI模型:遵循AI平台或软件提供的说明,训练AI模型以完成特定任务。
  5. 生成和验证结果:使用训练好的AI模型生成设计或预测,并验证结果的准确性和创造力。

人工智能在服装设计领域的成功案例

  • 设计师使用AI生成原创图案,为其时装系列增添了创新和独特之处。
  • 服装品牌使用AI预测趋势,能够提前把握时尚潮流并推出迎合消费者需求的产品。
  • 定制服装服务使用AI创建独一无二的服装,迎合了个人的风格偏好和身体形状。
  • 面料制造商使用AI优化面料性能,提高服装的舒适性、耐用性和可持续性。
  • 零售商使用AI简化供应链,减少浪费并提高商品的可用性。

结论

人工智能为服装设计领域提供了变革性的机会。通过利用AI的强大功能,设计师可以突破创意瓶颈,优化工作流程,并为消费者带来更个性化、创新和可持续的时尚体验。随着AI技术的不断发展,服装设计行业的未来一片光明,充满了无限的可能性。


人工智能专业主要学什么 就业方向有哪些

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。

在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。

基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。

根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。

根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。

根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。

不同实体之间通过关系相互联结,构成网状的知识结构。

在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。

通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。

知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。

特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。

但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。

随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。

机器翻译机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。

基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。

基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。

随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。

语义理解语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。

语义理解更注重于对上下文的理解以及对答案精准程度的把控。

随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。

语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。

问答系统问答系统分为开放领域的对话系统和特定领域的问答系统。

问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。

人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。

尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。

自然语言处理面临四大挑战:一是在词法、句法、语义、语用和语音等不同层面存在不确定性;二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;三是数据资源的不充分使其难以覆盖复杂的语言现象;四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算四、人机交互人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。

人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。

传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。

人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。

自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。

近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。

根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

目前,计算机视觉技术发展迅速,已具备初步的产业规模。

未来计算机视觉技术的发展主要面临以下挑战:一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。

从应用流程看,生物特征识别通常分为注册和识别两个阶段。

注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。

识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。

从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。

生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。

目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。

结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。

用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。

虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。

获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。

目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。

在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。

总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势

人工智能专业就业方向有哪些?

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。

在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。

基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。

根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。

根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。

根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。

不同实体之间通过关系相互联结,构成网状的知识结构。

在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。

通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。

知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。

特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。

但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。

随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。

机器翻译机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。

基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。

基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。

随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。

语义理解语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。

语义理解更注重于对上下文的理解以及对答案精准程度的把控。

随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。

语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。

问答系统问答系统分为开放领域的对话系统和特定领域的问答系统。

问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。

人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。

尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。

自然语言处理面临四大挑战:一是在词法、句法、语义、语用和语音等不同层面存在不确定性;二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;三是数据资源的不充分使其难以覆盖复杂的语言现象;四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算四、人机交互人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。

人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。

传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。

人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。

自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。

近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。

根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

目前,计算机视觉技术发展迅速,已具备初步的产业规模。

未来计算机视觉技术的发展主要面临以下挑战:一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。

从应用流程看,生物特征识别通常分为注册和识别两个阶段。

注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。

识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。

从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。

生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。

目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。

结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。

用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。

虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。

获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。

目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。

在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。

总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势

人工智能与设计(一):AI 发展历史

姓名:饶明磊 学号 【嵌牛导读】随着人工智能的兴起,设计师会不会担心自己被取代? 【嵌牛鼻子】机器学习 深度学习 创意设计 【嵌牛提问】人工智能对设计起到辅助作用还是会完全取代设计师? 【嵌牛正文】人工智能的发展历史 本人业余偶尔做一些设计、摄影之类的艺术活动,经常接触到一些创意软件,发现最近几乎每一款创意软件的重磅更新都体现在了人工智能算法的加入。

包括本人从事的研究领域,相关调试软件也是在不断加入人工智能调试算法,更加智能化了。

从设计方面着手,我在想,以后人工智能会不会完全取代设计师和工程师呢? 为了更好理解人工智能和设计的关系,我开始涉猎一些机器学习、深度学习等方面的知识,并且和相关专业的同学探讨这个方面的话题,从当初觉得人工智能只会让大部分设计师失业,到现在觉得人工智能只是一个设计的辅助工具,也算是成长了不少。

这个专题将分成三个部分来调研,用三篇文章较为详细地将 AI 的历史、定义以及和设计之间的关系和影响呈现给大家。

说起人工智能(AI:Artificial Intelligence)这词,不得不提及人工智能的历史。

人工智能的概念主要由Alan Turing提出:机器会思考吗?如果一台机器能够与人类对话而不被辨别出其机器的身份,那么这台机器具有智能的特征。

同年,Alan Turing还预言了存有一定的可能性可以创造出具有真正智能的机器。

(说明: Alan Turing (1912.6.23-1954.6.7)曾协助英国军队破解了德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。

因提出一种用于判定机器是否具有智能的试验方法,即图灵试验,被后人称为计算机之父和人工智能之父。

) 1956年,在达特茅斯学院举行的一次会议上,不同领域(数学,心理学,工程学,经济学和政治学)的科学家正式确立了人工智能为研究学科。

2006年达特茅斯会议当事人重聚,左起:Trenchard More、 John McCarthy 、 Marvin Minsky 、Oliver Selfridge、Ray Solomonoff 达特茅斯会议之后是大发现的时代。

对很多人来讲,这一阶段开发出来的程序堪称神奇:计算机可以解决代数应用题、证明几何定理、学习和使用英语。

在众多研究当中,搜索式推理、自然语言、微世界在当时最具影响力。

大量成功的AI程序和新的研究方向不断涌现,研究学者认为具有完全智能的机器将在二十年内出现并给出了如下预言: 1958年,H. A. Simon,Allen Newell:“十年之内,数字计算机将成为国际象棋世界冠军。

” “十年之内,数字计算机将发现并证明一个重要的数学定理。

” 1965年,H. A. Simon:“二十年内,机器将能完成人能做到的一切工作。

” 1967年,Marvin Minsky:“一代之内……创造“人工智能”的问题将获得实质上的解决。

” 1970年,Marvin Minsky:“在三到八年的时间里我们将得到一台具有人类平均智能的机器。

” 美国政府向这一新兴领域投入了大笔资金,每年将数百万美元投入到麻省理工学院、卡耐基梅隆大学、爱丁堡大学和斯坦福大学四个研究机构,并允许研究学者去做任何感兴趣的方向。

当时主要成就: 神经网络机、世界第一台机器人被制造出来了;贝尔曼公式( 增强学习 雏形)被提出;感知器( 深度学习 雏形)被提出;搜索式推理被提出 然而遇到了 第一次寒冬(1974年—1980年) 70年代初,AI遭遇到瓶颈。

研究学者逐渐发现,虽然机器拥有了简单的逻辑推理能力,但遭遇到当时无法克服的基础性障碍,AI停留在“玩具”阶段止步不前,远远达不到曾经预言的完全智能。

当时主要问题: 计算机运算能力有限,解决不了超大型的计算问题,同时人们对世界的认知还不够充分 当时有一个莫拉维克悖论:如果机器像数学天才一样下象棋,那么它能模仿婴儿学习又有多难呢?然而,事实证明这是相当难的。

1987年,AI 硬件的市场需求突然下跌。

科学家发现,专家系统虽然很有用,但它的应用领域过于狭窄,而且更新迭代和维护成本非常高。

同期美国Apple和IBM生产的台式机性能不断提升,个人电脑的理念不断蔓延;日本人设定的“第五代工程”最终也没能实现。

人工智能研究再次遭遇了财政困难,一夜之间这个价值五亿美元的产业土崩瓦解。

当时主要问题: 1.受到台式机和“个人电脑”理念的冲击影响 2.商业机构对AI的追捧和冷落,使AI化为泡沫并破裂 3.计算机性能瓶颈仍无法突破 4.仍然缺乏海量数据训练机器 在摩尔定律下,计算机性能不断突破。

云计算、大数据、机器学习、自然语言和机器视觉等领域发展迅速,人工智能迎来第三次高潮。

摩尔定律起始于Gordon Moore在1965年的一个预言,当时他看到因特尔公司做的几款芯片,觉得18到24个月可以把晶体管体积缩小一半,个数可以翻一番,运算处理能力能翻一倍。

没想到这么一个简单的预言成真了,下面几十年一直按这个节奏往前走,成为了摩尔定律。

主要事件 1997 年: IBM的国际象棋机器人深蓝战胜国际象棋世界冠军卡斯帕罗夫2005 年: Stanford开发的一台机器人在一条沙漠小径上成功地自动行驶了131英里,赢得了DARPA挑战大赛头奖;2006 年 Hinton 提出多层神经网络的深度学习算法 Schmidt在搜索引擎大会提出“云计算”概念2010 年: Sebastian Thrun领导的谷歌无人驾驶汽车曝光,创下了超过16万千米无事故的纪录2011 年: Waston参加智力游戏《危险边缘》,击败最高奖金得主Brad Rutter和连胜纪录保持者Ken Jennings 2.苹果发布语音个人助手Siri Lab发布第一代智能恒温器Nest。

它可以了解用户的习惯,并相应自动地调节温度2012 年: Google发布个人助理Google Now2013 年: 深度学习算法在语音和视觉识别率获得突破性进展2014 年: 1.微软亚洲研究院发布人工智能小冰聊天机器人和语音助手Cortana 2.网络发布Deep Speech语音识别系统2015 年: 发布了一款基于文本的人工智能助理“M”2016 年: AlphaGo以比分4:1战胜围棋九段棋手李世石 这个概念开始流行 发布为机器学习定制的第一代专用芯片TPU 发布语音助手Assistant2017 年: 在围棋网络对战平台以60连胜击败世界各地高手 开源深度学习系统 Tensorflow 1.0正式发布 AlphaGo以比分3:0完胜世界第一围棋九段棋手柯洁 4.默默深耕机器学习和机器视觉的苹果在WWDC上发布Core ML,ARKit等组件 发布了ARCore SDK 6.网络AI开发者大会正式发布Dueros语音系统,无人驾驶平台Apollo1.0自动驾驶平台 7.华为发布全球第一款AI移动芯片麒麟970 X 配备前置 3D 感应摄像头(TrueDepth),脸部识别点达到3W个,具备人脸识别、解锁和支付等功能;配备的A11 Bionic神经引擎使用双核设计,每秒可达到运算6000亿次 Zero完全从零开始,不需要任何历史棋谱的指引,更不需要参考人类任何的先验知识,仅需要4个TPU,并花三天时间自己左右互搏490万棋局,最终无师自通完爆阿法狗100-0 很多专家学者对此次人工智能浪潮给予了肯定,认为这次人工智能浪潮能引起第四次工业革命。

人工智能逐渐开始在保险,金融等领域开始渗透,在未来健康医疗、交通出行、销售消费、金融服务、媒介娱乐、生产制造,到能源、石油、农业、政府……所有垂直产业都将因人工智能技术的发展而受益,那么我们现在讲的人工智能究竟是什么? 详情参见下一篇:人工智能与设计(二):AI 是什么?

© 版权声明
机灵助手免费chatgpt中文版

相关文章

暂无评论

您必须登录才能参与评论!
立即登录
暂无评论...